
Development of an Interpreter for LRT using the

Exact Real Number Paradigm

J. Leonardo González-Ruiz, J. A. Hernández-Servín, J. Raymundo
Marcial-Romero

Facultad de Ingeniería, Universidad Autónoma del Estado de México, Toluca, México
leon.g.ruiz@gmail.com, xoseahernandez@uaemex.mx, jrmarcialr@uaemex.mx

Abstract. The exact real number representation can grow arbitrarily
so it does not truncate or rounds up as opposed to �oating point number
representation. The advantage of this representation is that not rounding
errors are generated and any operation can be achieved with the desired
accuracy. The LRT is a proposal that implements exact real number.
This paper develops an interpreter for LRT using this paradigm whose
operational semantics is based on sixteen rules so the programs based on
LRT libraries are less complicated to debug. One of the main problems in
implementing LRT has been memory consumption. The main contribu-
tion of this work is that LRT has its own administrator for in�nite lists
as well as its own lazy evaluation. The performance of programs written
in LRT interpreter is shown to be superior to the libraries of functions
in both execution time and use of memory.

Keywords: Exact real number, Interpreter, lazy evaluation, LRT, in-
terval arithmetic.

1 Introduction

The paradigm of exact real numbers arises from the need to represent real num-
bers on a computer, compared to traditional �oating point representation [6].
The real numbers may be described and represented in various forms for for-
mal purposes in mathematics, for example, represented by the intersection of
intervals [15].

For practical purposes, the common representation of real numbers is per-
formed by �nite strings of decimal digits{0, 1, 2, 3, 4, 5, 6, 7, 8, 9} and a dot
{.}.This representation is commonly used and is called "�oating point". The set
of digits can represent only a subset of the real numbers exactly, this means that
most real numbers must be represented by other real numbers that are close to,
or, for a interval of rational numbers which delimit the actual number requested,
causing rounding errors. Despite this, �oating point representation is acceptable
for a wide range of applications, however, the accumulation of these rounding
errors produced by a large number of computations produces inaccurate results.
For example, programming languages such as C, which uses �oating point arith-
metic causes rounding errors in complex operations that require precision of

31 Research in Computing Science 96 (2015)pp. 31–42; rec. February 27, 2015; acc. May 22, 2015

signi�cant digits, as an alternative of �oating point we have used the interval
analysis[15]. Interval analysis involves expressing a real as a pair of numbers
which represent an interval containing the number. Interval arithmetic opera-
tions compute new upper and lower bounds on the result after the operation
has been performed. One way to represent a real number using interval analysis
is digit strings of potentially in�nite size, this representation is known as exact
real numbers paradigm[3]. There are exact real number implementations like
IRRAM [12], IC-Reals [4], RealLib [7], that expect to become the standard for
use in program languages.

Another option for calculating real numbers is the language called LRT (Lan-
guage for Redundant Test) [11]. The language LRT is a variant of PCF [5] and
an extension of PCF (Programming Computable Functions) with a ground type
for real numbers and suitable primitive functions for real-number computation.
LRT e�ciency is given by the choice of linear functions, handling of potentially
in�nite lists and type of language evaluation. An implementation of this language
was developed by Lucatero [10], that developed a library for handling exact real
numbers in the programming language C++.

In this paper an interpreter for the LRT language is described, this interpreter
has the ability to handle in�nite lists and lazy evaluation. The development of
this interpreter merge two languages, LRT (for the real number calculation)
and C- [9] (for the basic grammar in a language) producing the new language
LGR. The scripts written for the interpreter will be compared with developed
implementations of Lucatero's library because it is considered the continuation
of her research.

2 Implementations

A real number is computable if there is an algorithm that can produce all its
digits. The representation of real number in a computer can be handled by
di�erent approaches ranging from libraries of functions in the C programming
language to applications in a functional language [10].

2.1 LRT Language

The LRT language (Language for Redundant Test), its a variant of Real PCF
[5] developed by Marcial et al. in 2004. LRT is a nondeterministic language,
eliminates the parallel conditional of Real PCF that is a parallel language and
add a nondeterministic operator Rtest [8].

A real number x can be represented in the LRT language as a tuple:

(y, 2e)

where y ∈ [−1, 1] y e ∈ Z.
LRT uses the representation (mantissa, exponent), where the mantissa is

represented by a in�nite list and the exponent as a integer number. This repre-
sentation allows LRT extends its rank to the entire real number line, with the
restriction that the mantissa must be in the interval [−1, 1].

32

J. Leonardo González-Ruiz, J. A. Hernández-Servín,and J. Raymundo Marcial-Romero

Research in Computing Science 96 (2015)

The constructors Cons, Tail y Rtest, are the base of the real number con-
struction in the LRT language.

� Constructor Cons : It is a function that accepts as input two intervals and
returns an interval, is the one that performs a reduction intervals and is
de�ned as follows:

Cons([x, x]) = [xa+ b, xa+ a]

where[a, a] y [x, x] are two intervals of rational numbers in the interval[−1, 1].

� Constructor Tail : It is a function that uses as input two intervals of rational
numbers belonging to the interval [−1, 1]. It is considered the inverse of the
constructor Cons only when the interval [x, x] is contained in [a, a]. In this
case the following equation is considered:

Tail[a,a][x, x] =
x− (a+a

2)

(a−a
2)

When [x, x] is not within [a, a], has to guarantee that the result is within the
interval [−1, 1], since this is the range of the function.

� Constructor Rtest: This function determines which side the rational number
lies within the interval [−1, 1], that is the Rtest returns True if the number
to be calculated lies in the positive side and False otherwise. LRT language
is called "redundancy check language" because the constructor Rtest is an
operator of redundant veri�cation, ie that there are numbers for which the
operator can return both true and false [10].

2.2 LRT Implementations

Two calculators were developed based on LRT language. One developed by Vil-
lanueva as described in [16], and the second one is a modi�ed version developed
by Linares [8]. Villanueva implements the basic operation using the functional
language Haskell by considering real number in the interval [−1, 1], his calcu-
lator gives accurate results but it is limited to basic operations. Speci�cally, he
implemented addition, subtraction, multiplication and division only. Linares, on
the other hand takes Villanueva's implementation and manages to add improved
algorithms to compute transcendental functions such as sin, cos, tan, tan1, e, and
log. fundamentally based on algorithms developed in [14] by adapting the type
of data used in the LRT language.

The calculator developed by Linares is more e�cient than the one by Vil-
lanueva and also the range operation is expanded to the entire line of real num-
bers; in spite of that neither of them improve implementations developed in the
programming language C++ such as iRRAM [10].

33

Development of an Interpreter for LRT using the Exact Real Number Paradigm

Research in Computing Science 96 (2015)

To improve these calculators, Lucatero [10] developed a library for handling
exact real numbers in the programming language C++ [8]. The algorithms and the
operational semantics of LRT language are implemented in C++ language using
FC++ which allows the use of calls by need (lazy evaluation) and the de�nition
of in�nite lists on an imperative language as is C++, both necessary for the
operation of the LRT semantics; in addition to use the �oating point number of
GMP library for greater accuracy in the LRT constructors.

The comparisons made by Lucatero, show signi�cantly improved runtime
operations compared with the implemented in a strictly functional language,
which also holds the operational semantics of the LRT language. The resulting
time is longer compared to the one developed in C++ that also uses the exact
real computation, as iRRAM. Lucatero concluded that memory consumption
increases as more precision digits are required in the calculations; this is due of
the recursive call used in the algorithms, because it must be stored in memory
of the new state of function call. The library developed by Lucatero has been
compared to commercial implementations as mentioned above, so, this research
is considered a continuation of her previous work in search of an interpreter
implementation more e�cient at runtime.

3 Methodology

To implement the interpreter a methodology based on a standard implemen-
tation [1] of a compiler is used, which consists of the following stages of de-
velopment: Lexical Analyzer, Syntactic analyzer, Semantic Analyzer, generate
intermediate code and optimize code.

The implementation of this methodology begins with two basic languages,
LRT and C- [9], the merge of these languages forms LGR language, having
the main characteristics of the two languages. The �rst one can compute exact
real numbers, and the second one, is a reduced programming language which
grammar is used as the basis for the development of interpreter in this research,
its semantics can be consulted in [9]. The interpreter is developed using the
programming language C, alongside with the grammar of LRT and C-.

3.1 Design the Lexical Analyzer

At this stage the source code of LGR is read, which is composed by a character
string. The analyzer collects character sequences into meaningful units called to-

kens to be used for the following stages. The lexical units used in this interpreter
are integers, �oats, booleans, real, rational comments, reserved words and blanks.
For design the lexical analyzer we use Flex[13], that is a tool for generating lex-
ical analyzers used for the development of the interpreter. This program reads
a text �le which contains C code that shows rules of regular expressions, this
�le can be compiled, generating an executable �le, which is capable of analyze
an input code in order to �nd regular expressions and execute its corresponding
code in C.

34

J. Leonardo González-Ruiz, J. A. Hernández-Servín,and J. Raymundo Marcial-Romero

Research in Computing Science 96 (2015)

For the develop of an lexical analyzer we must de�ne some rules called regular
expressions which represent patterns of strings. A regular expression is de�ned by
a set of strings that matches [1]. This language made by a pattern of characters,
is used to de�ne di�erent lexical elements of the interpreter, for a example, a
regular expression of a real number is shown as follow:

A real number can be represented as an interval succession of the form:
[(((digit+/digit+), (digit+/digit+))), ((digit+/digit+), (digit+/digit+)))∗, ...].

An other example of regular expressions are the reserved words of LRT lan-
guage:

� cons: Cons function.
� tail : Tail function.
� rtest: Rtest function.
� succ: Succ function.
� pred: Pred function.
� iszero: Iszero function.

3.2 Design the Syntactic Analyzer

The second stage of an interpreter is the syntactic analyzer. In order to develop
it, we use GNU bison [2] that is a general-purpose parser generator available
for almost all operating systems, normally used in conjunction with Flex. Bison
converts the formal description of a language, written in BNF (a formal way to
describe formal languages), in a program written in C that performs parsing.

The parser receives the LGR source code in a token form from the lexical
analyzer and performs the parsing call, which determines the structure of the
program.

A part of the LGR grammar in its real part, is described below:

〈type speci�er〉 ::= `INT'|`FLOAT'|`REAL'|`BOOL'|`RATIONAL'|`VOID'

〈statement〉 ::= 〈expressionstmt〉 | 〈compoundstmt〉 | 〈selectionstmt〉
| 〈 iterationstmt 〉 | 〈returnstmt〉 | 〈natstmt〉 | 〈realstmt〉

〈natstmt〉 ::= `SUCC' `('〈statement〉`)' | `PRED' `('〈statement〉`)'
| `ISZERO' `('〈statement〉`)'

〈realstmt〉 ::= `TAIL' `[' `RATIONAL' `,' `RATIONAL' `]' `('〈statement〉`)'
| `RTEST' `NUM' `NUM' `('〈statement〉`)'

〈factor〉 ::= `('〈expression〉`)' | 〈var〉 | 〈call〉 | `NUM' | `NFLOAT' | `FALSE'
| `TRUE' |`RATIONAL' | `CONS' | `['`RATIONAL'`,'`RATIONAL'`]'
`('〈statement〉`)'

35

Development of an Interpreter for LRT using the Exact Real Number Paradigm

Research in Computing Science 96 (2015)

3.3 Design the Semantic Analyzer

The next stage of development is the semantic analyzer, which is responsible for
giving meaning to the tokens and the structures formed on a user entered code.
LGR is a typed language and a type declaration has the form C x where x is a
variable and C is a type. Each variable must have a type declaration before is
used, the types of the attributes of a function must also be declared. Types used
for this interpreter are:

� int, Integer type.

� �oat, Float type.

� real, Real type.

� bool, Bool type.

� rational, Rational type.

When a function is invoked in the interpreter, the parameters join arguments and
the expression is evaluated; the value obtained is the meaning or reason for the
invocation of the function. In other hand LGR allows recursion, adding elements
such as lazy evaluation that is discussed below. An structure that the interpreter
uses for general purpose is a symbol table, which is a data structure that uses the
translation process of a programming language, where each symbol in the source
code of a program is associated with information such as location, type of data
and the scope of each variable, constant or function. A common implementation
of a symbol table can be a dynamic table, which will be maintained throughout
all stages of the compilation process.

The lexical analyzer in the previous step forms a parse tree, which is a rep-
resentation of the code structure of a string tokens, the tokens appear as leaves
of the parse tree from left to right and internal nodes tree depicting the steps
of a derivation [1]. However, a parse tree contains information that is not nec-
essary for the interpreter to be able to produce an executable code. Therefore,
a new tree is generated using only the information needed for compilation and
interpretation.These trees represent abstractions of token sequences of source
code that the user entered, and sequences of tokens can not be recovered from
them. However, it contains all the information needed for making more e�cient
the grammatical trees translation, these are known as abstract syntax trees, or
AST [9]. A parser will cover all the steps represented in a parse tree, in order to
obtaining a correct syntax, then an abstract syntax tree is constructed.

An other major task of the interpreter is to keep the information integrated
and updated of the data types, the use of this information ensures that each part
of the program makes sense and consistency under the rules of language, in this
case LGR, ie , type checking. This test is developed in the syntactic part. When
the interpreter produce the grammar tree, also performs a veri�cation type. This
operation is based on �nding a variable, looking for the variable in the symbol
table to know its type which it was declared. Subsequent to solve the expression,
either an assignment, an operation or an invocation to a function, the interpreter
veri�es that the data type in each of them is the same, otherwise sends an error
in the output of the interpreter. In this way ensures that the program does just

36

J. Leonardo González-Ruiz, J. A. Hernández-Servín,and J. Raymundo Marcial-Romero

Research in Computing Science 96 (2015)

what it must do, to have uniformity in the type of data, their operations and
their return values.

3.4 Generate Intermediate Code

At this stage an interpreter that takes as input the AST generated by the above
stage. The functions described below are responsible for interpreting the user-
written code, including its resolution using lazy evaluation.

� reduce function: The purpose of the interpreter is to solve the operations
described in the AST, reductions are performed in order to leave a code in
its minimal form to achieve the intended operation speci�ed by the user.

� lazyreduction function: To solve a source program in a lazy way, functions
are implemented that allow code execution using this form of evaluation.

To achieve lazy evaluation, speci�c functions are implemented to solve the pa-
rameters of a function in a lazy way, in other hand functions that allow handling
of recursion, detailed below are implemented.

� ftocall function: It is performed whenever there is a call to a function. A
stack that contains two columns is created, the �rst stores the variable that
invoked the call or on which the result will be re�ected back . In the second
column, the name of the function that was invoked is stored. In this way, the
interpreter is able to be solving the recursive calls and go freeing up memory
once the evaluation of functions is �nished.

� fparameters function: The lazy evaluation can decide when to solve a param-
eter, this is that if you need it, it will be evaluated. For this, the fparameters

function creates a stack, which stores in its �rst column a copy of the symbol
table of the function being invoked, in the second column pointers to AST
where the unresolved parameters are stored.

The above two functions are invoked at the same time whenever there is a call
to a function in the source code. In this way joins a call to a function with its
unresolved parameters. Once a recursive function is evaluated, the line in both
stacks is removed and freed from memory.

� interpret_parameters function: The moment that a function requires a pa-
rameter to solve their instructions, interpret_parameters function is respon-
sible for searching in the parameter table the AST code that solves it. In this
way, the function makes necessary operations to solve a function, arithmetic
expression, or stored variable, in order to return its resolved value and enable
the function that needs the value to continue with its operations.

When solving a parameter, the parameter table is updated with the value ob-
tained, avoiding solve each time the parameter required.

Functions for calculating real numbers are implemented, which use the func-
tions described above for lazy evaluation and recursion. The interpreter has
prede�ned functions where the LRT language is integrated.

37

Development of an Interpreter for LRT using the Exact Real Number Paradigm

Research in Computing Science 96 (2015)

� evaluate function: This function is prede�ned by the interpreter. Receives
two parameters to calculate the actual number and the desired accuracy.
The function evaluate, work as any function in the interpreter in a lazy way.

� evaluate_cons function: This function receives an AST pointer, the received
node has the return instruction from a Cons. Is the main function of LRT,
because performs the reduction of two Cons and evaluate if has come to the
accuracy desired by the user. This function stores a list of results, which is
the actual number determined at the end of the program.

� fcons function: The reduction of two intervals is performed by this function.
Receives two intervals of type Cons and returns the reduction. Since opera-
tions are performed between rational separately (numerator, denominator),
the integers in the numerator and denominator tend to grow quickly, so a
factorization function that factorize the rational numbers to store smaller
values within the INTERVAL structure is implemented.

� frtest function: This function receives an interval where are stored the de-
limited numbers l and r and an interval. The function returns an integer that
indicates whether the input range is or not, between the delimiting content.

� ftail function: The opposite process of determining the reduction of two
intervals, is made by the ftail function, this function receives an interval
of type Tailand returns an interval of type Cons, this as a result of the
operational semantics rules of LRT.

� evaluate_intervals function: Because ftail function returns an interval of
type Cons, an evaluation function is implemented which together with the
above, determine the reduction of two intervals using the rules of the opera-
tional semantics of LRT, recursively calling the ftail function . This function
receives a pointer of INTERVAL type, which contains the �rst position of
the doubly linked list of generated intervals.

� split_head function: This function receives a pointer to a node in the AST
and returns an interval generated type Cons. The primary function of split_-

head is to obtain an interval type Cons. This function is called whenever it
is necessary to calculate an other interval in di�erent functions of the LRT
language.

� asignParamAst function: For proper operation and code and memory op-
timization, a speci�c function is implemented to store the resulting values
in the calculation of real numbers. The asignParamAST function receives a
pointer to an AST node, and returns a pointer to a node of the same type.
Its primary function is to store the resulting intervals in the parameter stack
to prevent calculate again.

3.5 Optimize Code

The handling of pointers along the implementation of the interpreter is essential
for fast and e�cient memory usage. By not having to store each value in memory
space, we opt for using pointers to reference calculated values, resolve the lazy

evaluation and recursion over interpretation. Similarly, for optimal usage, calls
and parameter stacks are built in such a way that when a recursive call is �nished

38

J. Leonardo González-Ruiz, J. A. Hernández-Servín,and J. Raymundo Marcial-Romero

Research in Computing Science 96 (2015)

memory is released. One of the main advantages of the interpreter, despite using
in�nite lists scheme, the list that stores the result does not grow more than two
elements, unlike other implementations that store a list of intervals calculated
as the �nal result.

4 Results

The tests of the interpreter are performed on a computer with a processor at
2.66 GHz Intel Core 2 Duo, 4GB of DDR3 RAM. For testing and validation of
the interpreter ten di�erent scripts written in LGR are executed. The results of
the performance are shown below.

4.1 Calculation of Real Numbers with LGR

The faverage function receives two real numbers and returns the average of them.
Ten di�erent scripts are written and ran to calculate the arithmetic expressions
of the �rst column of table 1, in these scripts faverage and fractolist functions
are implemented in LGR, the last one converts a rational to a intervals list to
do later basic operation of average. The comparative with the GMP-FC++ library
for LRT is shown in Table 1.

The results in the Table 1, show that the runtime is lower than Lucatero's,
Likewise the memory consumption is minimal compared to her implementation;
Regarding the arithmetic expressions 9 and 10, interpreter results surpass those
of FC++ due to ine�cient factorization function used by the interpreter, showing
that the implementation of the program takes due to the number of operations
performed to factor and not the over�ow of RAM memory. In cases where takes
longer time is only consuming 348K of available memory.

The development of this work, follows a standard methodology for creating
compilers and interpreters. This allows the LRT language perform more au-
tonomously and not depend on functional languages like Haskell or as GMP
library functions for handling in�nite lists. Since, the interpreter is written in
the C programming language, is possible to run on di�erent operating systems
and computer architectures. One problematic factor found in the development
of this work is the handling integers of variable lenght due to bu�er over�ow in
the long long data type that handles the C programming language; because of
that, the interpreter fails to �nish on time because rational numbers are variably
growing, causing instability in the interpreter. To partly cope with this situation
a factoring algorithm that reduces the rational number is implemented to store
it appropriately in the type of data set; considering that an algorithm for prime
factorization is located within a problem of type NP, their performance at run-
time e�ects the output of the interpreter making it particularly slow. Because
of the di�culty of this problem we propose some guidelines in future work sec-
tion to remedy the situation. Making a comparison with the library developed
by Lucatero shows that the memory usage for recursion and e�ciency of lazy
evaluation solves the problem encountered in the previous research because it

39

Development of an Interpreter for LRT using the Exact Real Number Paradigm

Research in Computing Science 96 (2015)

Table 1. Comparison between implementations

No Arithmetic
Expression

Runtime (seconds)

GMP-FC++ LGR +

factoriza-

tion

LGR without

factorization

RAM used

by

GMP-FC++(K)

RAM used

by LGR

(K)

1
5∑
1

(1
4
+ 1

4
)

2
0.342 0.000693 0.000659 740 328

2
5∑
1

(1
3
+ 1

3
)

2
0.342 0.000923 0.000885 796 324

3
10∑
1

(1
2
+ 1

2
)

2
0.685 0.001929 0.000899 820 344

4
10∑
1

(2
5
+ 2

5
)

2
0.685 0.001234 0.000813 1, 020 340

5
15∑
1

(1
3
+ 1

3
)

2
1.028 0.009086 0.008132 1, 252 332

6
15∑
1

(1
4
+ 1

4
)

2
1.028 0.009270 0.001066 904 356

7
20∑
1

(1
2
+ 1

2
)

2
1.41 0.135286 0.001587 984 372

8
20∑
1

(2
5
+ 2

5
)

2
1.41 0.406574 0.005135 1, 544 372

9
25∑
1

(1
4
+ 1

4
)

2
1.7625 8.527817 0.011391 1, 076 384

10
25∑
1

(2
5
+ 2

5
)

2
1.7625 12.953400 0.025865 1, 868 380

could not control how memory is freed in FC++ runtime, unlike this interpreter
that performs releasing memory when �nished using a recursive call or param-
eter. Making a comparative in runtime this interpreter surpass the reported by
Lucatero, due to handling in�nite lists.

5 Conclusions

In this paper an interpreter using the methodology shown in Section 3 is devel-
oped, for calculating exact real numbers in the programming language C. The
functions necessary to implement recursion, lazy evaluation and in�nite lists are
implemented, using Flex tools for building a lexical analyzer and Bison for the
construction of a parser. The operational semantics of the programming lan-
guage LRT and C- language are merged in order to obtain the language LGR.
The results show the e�ciency of the management of recursion and lazy eval-
uation. In a matter of precision and accuracy of the results of operations that
can be performed with the interpreter, the results show that the implementation
provides an accurate result using the speci�ed accuracy. The development of the

40

J. Leonardo González-Ruiz, J. A. Hernández-Servín,and J. Raymundo Marcial-Romero

Research in Computing Science 96 (2015)

interpreter shows evidence of having a standalone product and controlled for
LRT language .

The problem of memory management in the library created by Lucatero has
been resolved in this implementation, however, problems encountered in this
development are the following:

An interval consists of two rational, which are treated separately as the nu-
merator and denominator, performing operations using these integers. The prob-
lem arises when these integers start growing. Integers use the type long long, the
larger type that stores integers in C. Since the numbers are growing rapidly, a
factorization function is used to decrease the size of the resulting integer. When
making an interval reduction by fcons function, function factorize is invoked.
When trying to store these numbers in variables of type long long, at reach its
maximum storage capacity, over�ow variables, avoiding the interpreter to �nish
its execution.

The development of this interpreter leaves open lines for improvement in a
matter of implementation, to solve the problems encountered in this development
and add more grammar to the language to make a more robust LGR language.
A further work may be the following:

� Development of a data structure capable of storing a variable length integer.
� Implementation of the trigonometric functions for LRT.
� Perform the implementation of three-address code.

References

1. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers, Principles, Techniques. Addison
wesley (1986)

2. Corbett, R., Stallman, R.: Bison: Gnu parser generator. Texinfo documentation,
Free Software Foundation, Cambridge, Mass (1991)

3. Edalat, A.: Exact real number computation using linear fractional transformations.
http://www.doc.ic.ac.uk/exact-computation/exactarithmeticfinal.ps.gz

4. Errington, L., Heckmann, R.: Using the ic reals library. http://www.doc.ic.ac.
uk/exact-computation

5. Escardó, M.H.: PCF extended with real numbers. A domain-theoretic approach to
higher-order exact real number computation. Ph.D. thesis (1997)

6. Goldberg, D.: What every computer scientist should know about �oating-point
arithmetic. ACM Computing Surveys (CSUR) 23(1), 5�48 (1991)

7. Lambov, B.: Reallib: An e�cient implementation of exact real arithmetic. Mathe-
matical Structures in Computer Science 17(01), 81�98 (2007)

8. Linares, D.: Diseño e implementación de una calculadora cientí�ca con el lenguaje
de programación lrt. Licentiate thesis (2009)

9. Louden, K.C.: Construcción de compiladores. Principios y prácticas (2005)

10. Lucatero, A.: Desarrollo e implementación de una librería para el cómputo real
exacto basado en lrt. Licentiate thesis (2013)

11. Marcial-Romero, J.R., Escardó, M.H.: Semantics of a sequential language for exact
real-number computation. In: Logic in Computer Science, 2004. Proceedings of the
19th Annual IEEE Symposium on. pp. 426�435 (2004)

41

Development of an Interpreter for LRT using the Exact Real Number Paradigm

Research in Computing Science 96 (2015)

http://www.doc.ic.ac.uk/exact-computation/exactarithmeticfinal.ps.gz
http://www.doc.ic.ac.uk/ exact-computation
http://www.doc.ic.ac.uk/ exact-computation

12. Müller, N.T.: The irram: Exact arithmetic in c++. In: Blanck et al. (eds.). LNCS,
vol. 2064, pp. 222�252. Springer Verlag Heidelberg (2001)

13. Paxson, V., Estes, W., Millaway, J.: Lexical analysis with �ex. http://flex.

sourceforge.net/

14. Plume, D.: A calculator for exact real number computation. Ph.D. thesis (1998)
15. Potts, P.J., Edalat, A.: Exact real computer arithmetic. Draft report, Imperial

College, London (1977)
16. Villanueva, G.: Diseño e implementación de una calculadora para cómputo con

números reales exactos empleando información redundante. Licentiate thesis (2007)

42

J. Leonardo González-Ruiz, J. A. Hernández-Servín,and J. Raymundo Marcial-Romero

Research in Computing Science 96 (2015)

http://flex.sourceforge.net/
http://flex.sourceforge.net/

	Development of an Interpreter for LRT using the Exact Real Number Paradigm

